
times obtained, however, after a factor of 25, in a 
direction which would be compatible with the presence 
of two types of oxygen atoms. Even though we feel 
that this curvature is most likely due to errors in the 
graphical analysis of the curves, we cannot be certain 
that the plots are linear over a factor of more than 25 to 
30. 

Therefore, the participation (to an important extent) 
of excited oxygen atoms cannot be ruled out because 
the observed linearity is over an insufficient range. 
However, from the linearity over the first factor 
of 25-30 in log (ItrlhJ), we can say the following: 
(1) if ku > 2klb, then initially 0(3PVO(1D) > 3, 
and our experimental value is approximately 25% 
(or less) lower than A;ia; (2) if klb > 2kia, then initially 
0(1D)ZO(3P) > 3, and our experimental value is ap­
proximately 25% (or less) lower than fclb; (3) if 0(3P)/ 
0(1D) is initially approximately unity, then (a) kisL 

is less than about 1.8/cib, and our experimental value is 
approximately midway between /cia and klb, or (b) 
kib is less than about 1.8/cia, and our experimental value 
is approximately midway between k\& and kih. 

One can see that the above statements are valid by 
making test plots of two simultaneous ozone growth 

The significance of the chronopotentiometric diffusion 
coefficient Dch of an ion in a fused salt solvent is elucidated 
by developing rigorous equations that relate this quantity 
to other transport properties of the system {"ordinary" 
diffusion coefficient and transference numbers). It is 
shown that when sufficiently small concentrations are 
employed Dcn becomes substantially identical with both 
ordinary and self-diffusion coefficients. A new method 
is proposed for taking account of the double layer charg­
ing current in determining the "transition time" to be 
used in the calculation of Dch from experimental chrono-
potentiograms. 

Chronopotentiometry is an experimental procedure in 
which the potential of an electrode is observed as a 
function of time during passage of a constant current 
sufficiently large to produce concentration polarization 
with respect to a species undergoing electrochemical 
reaction. In addition to being an analytical tool, the 
technique has been used to measure a transport param­
eter usually referred to as the "ionic" diffusion coef­
ficient. Here this will be called the "chronopotentio­
metric" diffusion coefficient. Its relation to other 

(1) (a) This work is supported by a contract with the U. S. Atomic 
Energy Commission; (b) School of Chemistry, Rutgers University, New 
Brunswick, N. J. 

curves, using various values for kijk%b and 0(3P)/ 
0 ( 1D), and adding together the curves due to reactions 
la and lb. One can then see the extent of nonlinearity 
expected. 

The most reliable value of kla, as determined1S by the 
steady-state flow method already described, appears to 
be 1.3 ± 0.3 X 108 M~2 sec.-1. On the basis of this 
we can rule out (2) and (3b) above as being possibilities. 
From (1), our experimental value predicts that £ia = 
0.83 X 108 to about 1.0 X 108 M~2 sec.-1, and (3a) 
predicts from our experimental value that kla, ~ 1.0 
X 108 M - 2 sec.-1. Within the uncertainty allowed 
by either (1) or (3a), therefore, there is agreement be­
tween the value of kl2l obtained from our experiments 
and the value of 1.3 ± 0.3 X 108 M~2 sec.-1, although 
our results favor the lower extreme of the latter. 
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transport parameters, particularly "ordinary" and 
"self-diffusion" coefficients, has not been elaborated 
elsewhere. By developing equations that accurately 
describe variations of concentration and potential with 
time in terms of unambiguously defined parameters, 
the present work will show the physical significance of 
the chronopotentiometric diffusion coefficient of an 
electroactive ion in a molten salt solvent. 

The Instantaneous Flux. A Rigorous Diffusion-
Migration Equation. In any experiment involving ionic 
migration through a concentration gradient, correct 
mathematical treatment requires the use of electro­
chemical potentials as the "thermodynamic forces" 
on ionic species.2 A particularly simple set of equa­
tions for this purpose is provided by the friction coef­
ficient formalism.3'4 In applying this approach to 
steady-state problems in an ionic diffusion layer,6 

the product of concentration times friction coefficient 
that appears throughout the phenomenological equa­
tions was previously expressed in the form Xkrik, 
where X* is a kind of mole fraction in which each ionic 
and molecular species is treated as a separate com-

(2) E. A. Guggenheim, J. Phys. Chem., 33, 842 (1929). 
(3) A. Klemm, Z. Naturforsch., 8a, 397 (1953). 
(4) (a) R. W. Laity, J. Phys. Chem., 63, 80(1959); (b) J. Chem. Phys., 

30, 682 (1959). 
(5) R. W. Laity, J. Phys. Chem., 67, 671 (1963). 
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ponent. It is more convenient in the present work to 
express concentrations in moles per unit volume. Thus 
the fundamental equations for a system composed of N 
ionic and/or neutral species at uniform temperature 
and pressure are written 

(i,fc= 1,2, ...,N) (la) 
N 

-VPt = £ RtA(Vi - v*) 

Rik — Rk (lb) 

where VM* is the gradient of electrochemical potential 
of species i, vt and vs are ionic velocities, ck is the con­
centration in gram formula wt./cm.3, and Rilc is the 
corresponding friction coefficient (joule cm./mole of / 
mole of k). In a mixture of two binary fused salts 
with one ion in common this becomes 

— V/Zi = RnC2(V1 - V2) + i?13c3(vi - V3) (2a) 

- Vp2 = -Ri2Ci(V2 — Vi) + R23C3(V2 — V3) (2b) 

-VjU3 = J?i3ci(v3 — Vi) + i?23c2(v3 — V2) (2c) 

where the Onsager reciprocal relations lb have already 
been applied. If ionic species 1 is transformed at an 
electrode to a new species soluble in the melt, these 
equations must be modified and another equation added 
to describe completely the transport properties of the re­
sulting system. However, if species 1 is being removed 
by electrolysis from the mixture, the three equations (2) 
will suffice. Our attention will be restricted to the latter 
case. 

An expression for the flux Ji in terms of the current 
density i and concentration gradient Vci can be derived 
from eq. 2a-c. Let species 1 and 2 have charges of the 
same sign. If we adopt the convention that the 
chemical potential of the salt composed of ions 1 and 3 
is written4 

/U13 = Z3Ji1 + ZlJU3 

where Z1 and z3 are the absolute values of the ionic 
charges, then on combining eq. 2a and 2c with the 
electroneutrality condition 

ZlCi + Z2C2 = Z3Cz 

we obtain the gradient of this potential. 

— VMn = (z3i?i2 + Z2-Ri3)C2Vi — (Z3-Ri2 + 

Zi-R23)C2V2 — (Z2-Ri3 — Zi-R23)C2V3 (3) 

If species 1 and 2 are taken to be cations, the net cur­
rent density i is given by6 

i = -F(ZiCiVi + Z2C2V2 — Z3C3V3) (4) 

Equation 3 can now be rearranged to give 

Z 2 

Vi — V3 = 
Zi2Ci-R23 + Z2

2C2-Ri3 + Z3
2C3-Ri2 

Z3-Ri2 + Zi-R23 

VMi 

i (5) Zi2Ci-R23 + Z2
2C2-Ri3 + Z3

2C3-Ri2F 

This expression is rigorously correct, but cumbersome 
to work with. It contains the interionic friction coef­
ficients .Ri2, .Ri3, and R23 whose values are not available 

(6) For convenience in applications involving the presence of an 
electrode, we have taken the current to be positive when the velocities 
of the cations are negative; i.e., cations approach the origin from the 
positive x direction. A negative sign is therefore written before the 
parentheses in eq. 4. 

for most fused salt mixtures. Considerable simplifi­
cation can be effected by identifying the particular 
combinations of friction coefficients that appear on the 
right-hand side of (5) with conventional transport param­
eters. 

Relations of the type needed have been given pre­
viously for the friction coefficients rtk, defined on the 
mole fraction basis.4b Here, we can develop analogous 
expressions by inserting the definitions of conventional 
parameters into eq. 5. Thus, when a mixture of uni­
form composition (VM13 = 0) is electrolyzed, the current 
z'i3 carried by species 1 relative to species 3 is given by 

/is = — (vi — V3)CiZiF (6) 

and can be used to define a "transference number" 
t13 equal to i13ji. From (5) it follows that 

ZiCi(Z3-Ri2 + Zi-R23) 
h3 = 

Zi2Ci-R23 + Z2
2C2R13 + Z3

2C3-Ri2 
(7) 

Similarly, the thermodynamic mutual diffusion coef­
ficient D i 2 ' is defined by4b 

vi = -(D12
1JRT)VtX13 

with the restrictions 

i = 0 and CiVi + c2v2 = 0 

(8a) 

(8b) 

Putting restrictions 8b into (5) and comparing the 
result with (8a) shows that 

D12' = 
Z3C3RT 

(C1 + C2)(Zi2Ci-R23 + Zi2C2-R13 + Z3
2C3-Ri2) 

Substitution of (7) and (9) into (5) now gives 

V1 — V 3 = 
Z2(Ci + C2) D i 2 ' 

RT Z3Ci 
VMi 

h3i 

Z1C1F 

(9) 

(10) 

an expression containing no friction coefficients. To 
remove the necessity of having thermodynamic data 
available, we can make use of the ordinary diffusion 
coefficient D12, which is related to D12' by 

Dj2 = Di2'(I + d In y13jd In Z13) 

where 713 is the activity coefficient of the salt and Z13 

its mole fraction. Now since 

dMi3 = -RFd In a13 = -RF(d In 713 + d In Zi3) 

it follows that 

D12' 
RT 

VMi3 = Di2V In Zi3 (H) 

It is desirable to have all concentrations expressed in 
dimensions of moles per unit volume. Recalling the 
convention adopted here in defining the mole, we can 
write 

Zi3 = C1VJz3 (12) 

where V is the volume of mixture containing a total of 
1 mole of salt. Now letting J13 represent the flux of 
ion 1 relative to ion 3, it follows from (10) with (4), 
(11), and (12) that 

J 1 + Z 2 ^ z 1 C 1 V 1 cUnFX 
V Z3 CsA d In C1) Z1F 

(13) 
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Equation 13 is an exact relationship governing the flux 
of cation 1 at any point in a system of this type under 
any conditions of concentration gradient and current 
density, provided there are no convection currents. 
The corresponding equation when 1 and 2 are anions 
would have the sign of the last term on the right re­
versed. 

Time Dependence of Concentration in Chronopo-
tentiometry. In order to take the divergence of eq. 13 
it is necessary to know the concentration dependence 
of the coefficients of Vc1 and i. Clearly these depend 
on the specific system under consideration, so that in 
order to give a general treatment it is necessary to 
assume a characteristic or idealized behavior. Here 
we will choose the simplest assumptions consistent 
with reasonable behavior of the transport properties of 
a system dilute with respect to one of the cations 
(species 1). We define 

A. = 1 + 
Z2 — ZlCi 

Z 3 C3 
i + !£7> 04.) 

018 = hzjd ( 1 4 b ) 

and assume that both Di3 and du are independent of 
concentration in the range of interest. Putting defini­
tions 14 into eq. 13 and taking the negative divergence 
of both sides (restricting the flux to the x direction) 
now gives 

-VZi3 = 
d c i 

Vt dx2 Z1FdX 

The classical treatment of the growth of concen­
tration polarization due to electrochemical removal of 
an ionic species starts with a statement of 'Tick's second 
law" 

d c i 
D1 dx2 

in which the significance of the "ionic" diffusion coef­
ficient D1 is not specified. Equation 15 is seen to be a 
more rigorous version of Fick's second law in which 
the nature of the diffusion coefficient is specified (by 
eq. 14a) and a term is included that reflects the presence 
of the applied field. To determine the significance of 
the latter in chronopotentiometry, we will retain the 
second member on the right in applying eq. 15 to this 
experiment. 

We wish to determine the concentration cx at the 
surface of a planar electrode (normal to the x direction) 
at any time t after a constant current i starts removing 
species 1 from solution in the absence of convection 
currents. The initial condition is 

Cl = Cl
b (t = 0, 0 < x) (16a) 

due to the uniform composition of the solution. The 
boundary conditions are 

J1 = -IJz1F 

J2 = 0 
(t > 0, x = 0) (16b) 

where the total number of electrons transferred in the 
electrolysis reaction is taken equal to the charge on 
species 1, since only this cation can "cross" the solu­
tion-electrode interface.7 

(7) It will be recalled that species 3 has been taken as the velocity 
reference in eq. 15, and hence in (16b) where it defines the velocity of 

Equation 15 can be simplified by a transformation of 
variables. Substituting 

Cl * = /V>.b (C! b 
. , Pt . Ix 

Cl) e X p L ^ + 2DT3 
where/ = B1 ZJz1F gives 

d c i * 

I)T = D1 
d 2 C i * 

(17) 

Application of the Laplace transformation 

ci*(x,<r) = I e-rici*(x,t)dt 
Jo 

and the appropriate initial and boundary conditions for 
Ci* reduces the partial differential equation (17) to the 
ordinary differential equation 

D 1 3 = " • " - * 

dx2 (Tcr (18) 

Solving (18) for the case x = 0 and carrying out the 
inverse transformations gives an expression for the 
concentration cis at the electrode surface at any time t 
in a solution whose bulk concentration is cib 

Cl5 = Cib HzEJd1, (19a) 

where t2i = (1 — C1
0Ou) is the transference number of 

species 2 in the bulk melt (i.e., outside the diffusion 
layer) 

E = IaViJv exp ( - a 2 0 + e r f ( a \ /0 + 

IaH e r fc( -aV7) (19b) 

and 

a = B1ZJIIZ1FVDJZ (19c) 

The symbols erf and erfc refer to the error function and 
its complement, respectively. 

erf 
2 x = v 

erfc w = 1 

- I exp ( -
TTJO 

z2)dz 

erf w 

Significance of the Chronopotentiometric Diffusion 
Coefficient. We have pointed out that the concept of 
"ionic" diffusion coefficient is introduced in the clas­
sical treatment of chronopotentiometry as the un­
specified quantity D1 appearing in Fick's second law. 
It is later made operational by identifying it with a 
combination of experimental parameters8 

D1 = 
Ii 

Z1Fc1* 

•T 

7T 
D ch (20) 

where T is the "transition time," i.e., the time required 
for Cis to become zero (negligible compared with cib). 
Equation 20 can be taken as the definition of the chrono­
potentiometric diffusion coefficient Dch. 

the electrode surface as zero at x = 0. When the two salts have unequal 
equivalent volumes, the reference coordinates move in the coordinate 
system of the laboratory at points further out O > 0), but remain fixed 
at x = 0. 

(8) No te that we are considering only the case in which cation 1 is 
completely discharged at the electrode. Hence we have used z\ in eq. 
20 where it is customary to use n, the number of electrons transferred in 
whatever electrochemical reaction occurs. 
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In our treatment the value of T can be obtained im­
plicitly from eq. 19. 

0 = C1
13 - (W0is){2a- exp(-aV) + 

erf(a\/^) + 2aV e r f c ( - a \ / r )} (21) 

Now in order to determine the significance of the 
chronopotentiometric diffusion coefficient Dch, we 
note from eq. 19c and 20 that 

/ - V^i3Cib JD~ch 
aVr - — 4 — y-DZ 

Substitution of this expression (or its square) into eq. 
21 wherever a power of a\/t appears gives Dch im­
plicitly in terms of the bulk concentration Cib and the 
transport parameters Di8 and On. The equation thus 
obtained is rigorously correct, but rather complicated. 
To obtain greater insight, certain approximations are 
useful. 

When the argument w is 0.05 or less, the functions in 
eq. 19b and 21 are given to within 0.1 % or better by 

erf co = loijs/i^ 

erfc co = 1 — 2UJ-\/TT 

exp(—w2) = 1 — co2 

Under these conditions E can be calculated from 

E = 2aVihr(2 + aVii + aH) (22) 

and substituted into (19a) to obtain Ci{t). The transi­
tion time is again given implicitly when C1

5 is set equal 
to zero. 

O = C1* -(2WZz1F)^Jl + 

ft.1 . p • e\zir j 
4 z i F ^ D 1 3 8Z)13Z1

2F2J ^ ' 

The range of validity of (22) and (23) for a typical 
fused salt system can be estimated by taking Bn » 
50 cm.3/mole and V D T 3 * 5 X 10-3 cm. sec.-1/a 

equiv./mole. The approximations are found to be 
accurate within 0 .1% provided iy/t < 1 amp. sec.1/2 

cm. -2 . This provision will be satisfied for all t up 
to the transition time, according to (23), at any initial 
concentration C1

13 up to about 2 M, i.e., 2 X 1O-3 

mole/cm.3, at which point the last two terms inside the 
braces have attained the values 0.10 and 0.045, respec­
tively. In the limit, as *23 -»• 1, i-e., as cib -> 0, eq. 23 
can be rearranged to give 

Comparing (24) with (20) and (23), we therefore con­
clude that the measured chronopotentiometric dif­
fusion coefficient can be considered identical with the 
parameter Dn whenever the neglect of the last two 
terms of (23) is warranted by the accuracy of the ex­
periment. The discrepancy is calculated to be less 
than 0.2% at concentrations below 0.04 M but in­
creases to about 11 % at 2 M. To obtain a much more 

accurate relationship (±0.2%) between DCh and Dn 

for the range 0.04 to 2 M, it is only necessary to pre­
serve the transference correction factors of (23) in 
eliminating i\fT between this equation and eq. 20. 

Since C\\c% < 0.002 and d In V/d In C1 is expected to 
be even smaller at concentrations below C1

15 = 0.04 
M, it follows from eq. 14a that the chronopotentio­
metric diffusion coefficient can be equated directly to 
the ordinary or interdifFusion coefficient Di2 even for 
mixtures of different charge type (Z1 ^ z2) in this con­
centration range. This in turn is equal to the self-
diffusion coefficient Dn in very dilute solutions.415 

At higher concentrations the expressions developed 
here permit a rigorous evaluation of D13 (but not D11) 
from chronopotentiometric and transference data for 
systems conforming to our assumptions that both D13 

and 0I3 remain concentration independent. It seems 
unlikely, however, that such restrictive assumptions 
will apply quantitatively to most systems above 0.04 
M. Thus, unless specific solutions of eq. 15 are de­
veloped that take account of actual concentration 
dependences of D13 and Bn in particular systems, the 
use of chronopotentiometry for determining transport 
properties of fused salt mixtures can be applied un­
ambiguously only to the very dilute range in which Dch 

= D12. 

Effect of Electrical Migration. In the foregoing 
section it was seen that the effect of the final term in 
our rigorons analog of Fick's second law (eq. 15) on 
the interpretation of chronopotentiometric data is rela­
tively small in dilute solutions. Its component in eq. 
23 is a correction factor which is a quadratic function 
of the initial concentration Cib (since i\/T is directly 
proportional to Cih). Thus at c^ = 0.04 M, electrical 
migration of the electroactive ion may be said to con­
tribute about 0.2% to the observed transition time, 
while at cx

b = 2 M the value of VV is increased by 5.5 % 
and hence T itself by 11 % as a result of migration. 

Although the almost negligible effect of migration 
seems to be taken for granted in the literature of 
chronopotentiometry, it was not so obvious to us at 
the outset of this work. At the first moment the cur­
rent is turned on, the ionic flux must be due entirely to 
migration. The contribution from diffusion "grows 
in" as the electrode becomes increasingly concentra­
tion polarized, but the run is terminated just as the 
concentration gradient reaches its maximum value. 
The fraction of r over which migration is significant 
would be difficult to estimate without the equations 
developed here. 

Gradient of Electrical Potential. To describe quanti­
tatively the variation of the measured potential with 
time, it is first necessary to develop an expression for 
the potential difference between the electrode at which 
the ion of interest is discharging (indicator electrode) 
and a reference electrode placed some distance away in 
the melt. Although the latter is normally a reversible 
electrode, the potential of the former is determined by 
both thermodynamic and kinetic aspects of the re­
action taking place and cannot be strictly reversible to 
the electroactive ion. Especially in fused salts, how­
ever, the amount of "activation polarization" is 
usually very small. In any case, this part of the total 
polarization depends primarily on the current density 

Laity, Mclntyre / Chronopotentiometric Diffusion Coefficients in Fused Salts 3809 



and thus should remain constant during a chrono-
potentiometric run. Its presence will be ignored in the 
remainder of this paper, the potential of the indicator 
electrode being taken the same as that of an electrode 
reversible to the electroactive ion at the same point in 
the melt. 

For convenience we may also take the reference 
electrode reversible to ion 1. (Its potential can be 
related to the potential of any other reference electrode 
by standard thermodynamic methods.9) The po­
tential of each electrode is then determined by the 
electrochemical potential of species 1 in the adjacent 
melt, the observed e.m.f. being9 

e = (M!S - X)Iz1F (25) 

where the superscripts s and r refer to the electrolyte 
at the surfaces of the indicator and reference electrodes, 
respectively. 

To evaluate the electrochemical potential difference 
in eq. 25, the right-hand side of eq. 2a must be re­
written in such a way that it can be integrated with re­
spect to distance. First, solve eq. 4 for v2 and sub­
stitute into (2a). Setting v3 equal to zero throughout, 
we can now replace V1 by the right-hand side of eq. 5 
to obtain VM13 and /. Again the coefficients are com­
plicated combinations of friction coefficients that can be 
identified with conventional transport parameters di­
rectly from the definitions of the latter. One of these 
identifications is the same expression for t13 that was 
found previously in eq. 7, the identity of the two ex­
pressions being a consequence of the Onsager recip­
rocal relations lb. The other is a relation between the 
equivalent conductances A and the friction coefficients 

Rtk-

A _ Zi2Ci-R23 + 222C2-Ri3 + Zz2CjRn 
F2 ZiC3(C1RnRu + C2RURM + C1RURM) 

With these simplifications the expression for the gra­
dient of electrochemical potential becomes 

V,ui = — 3̂VjUi3 H ^ - i (26) 
Z2C2 2C3A3 

Equation 26 is an important relationship. Taken 
along with eq. 13 it provides us with a complete set of 
rigorous interrelations among the electrical and chem­
ical potential gradients, the current density, and the 
flux of ion 1 at any point. 

Variation of Potential with Time. In chronopotenti­
ometry we are only concerned with the potential dif­
ference between two points and can restrict eq. 26 to 
one dimension. Integration along a line connecting the 
two electrodes then gives 

- ^ f M d M i . + j d * (27) 
M1!, Z1Z2C2F JX = O Z2C3A 

where / is the length of the line, and the potential dif­
ference e is defined by (25). The two members on the 
right of eq. 27 can be thought of as the contributions of 
electrode potential and IR drop, respectively. 

In dilute solution the second integrand in eq. 27 is 
almost independent of the small concentration changes 

(9) R. W. Laity in "Reference Electrodes. Theory and Practice," 
D. J. G. Ives and G. J. Janz, Ed., Academic Press Inc., New York, N. Y., 
1961, p. 524 ff. 

that occur in chronopotentiometry. We can treat it as 
a constant to obtain its contribution to the total e.m.f. 

H H „„ , em = , = - (28) 
z3c3A x 

where x is the specific conductance. The reference 
electrode might be located anywhere from 0.1 to 10 
cm. away from the indicator electrode. Taking % = 
1 ohm - 1 cm. - 1 as a typical fused salt conductivity, we 
see that for a polarization current of 20 ma,/cm.2 the 
contributions of IR polarization at these extremes of 
electrode separation are 0.002 and 0.2 v., respectively. 
It should be emphasized, nevertheless, that the change 
in €IB during a chronopotentiometric run is independent 
of electrode separation (so long as the reference elec­
trode remains outside the region of concentration 
variation), and is so small (less than 0.1 mv.) that it 
can safely be neglected in any consideration of ob­
served potential variations in fused salts. 

To evaluate the contribution of electrode potential ee 

to the total value of e in eq. 27, the thermodynamic be­
havior of the specific salt system must be known. We 
can get a general picture, however, by making use of the 
fact that the variation of activity coefficient in fused 
salt systems at low concentrations is likely to be negli­
gible. In chronopotentiometry this justifies the ap­
proximations 

d^i3 « RT(z3 d In Ci + Zi d In c3) 

^RTz3 d In Ci 

The first integral of eq. 27 is further simplified by the two 
additional dilute solution approximations t23 « 1 and 
z2c2 « z3c3, yielding a simple Nernst expression for the 
contribution of electrode potential 

ee = - ^ - l n c i V c i ' (29) 
Z1C 

Since the concentration around the reference electrode 
Cir is the same as the bulk concentration Cib, the total 
e.m.f. during removal of species 1 at current i from a 
solution at concentration cx

b can now be expressed as 
a function of time by substituting the value of cis from 
eq. 19a into 29 and adding eq. 28. Approximating E 
in (19a) by the first term on the right in eq. 22 gives 

e=_^ J 1 - ^ + ! ? (30) 
Z1F \ Z1Fc^ J K 

Equation 30 shows that chronopotentiometry at re­
versible electrodes in very dilute fused salt systems gives 
the familiar "wave" when e is plotted against t. It 
can be put into more commonly used form by sub­
stituting the value of r from eq. 24 to give 

• - -S - (' - $ + ; (31> 
Effect of Double Layer Charging. Any treatment of 

chronopotentiometry in which the electrolysis current 
density ?'e is set equal to the total current density z'T 

suffers from the fact that the latter quantity includes 
also the current /d required to charge the double layer 
to ever increasing potentials. The electrolysis current 
density in a practical experiment is thus a function of 
time given by 

U = h - id (32) 
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where z'T is a constant and z'd a variable that changes 
most rapidly near the extremities of the run. To use 
the results of the previous sections to calculate ac­
curate diffusion coefficients from experimental chron-
potentiograms, it is therefore necessary to apply some 
sort of "correction" to the observed value of i or r. 
Delahay and Berzins10 described a method of correct­
ing T in such a way that i in eq. 20 could be set equal 
to z'-i- Their procedure was criticized by Reinmuth11 

because it implied that r is a linear function of z'e. 
Instead, Reinmuth advocated an empirical approach 
which had been found to give constant values of 
z'TVV in aqueous electrolytes at fixed concentration. 
These workers have been concerned primarily with 
kinetic and analytical applications of chronopotentiom-
etry. The purpose of this section is to attempt to 
provide a simple, rational basis for analyzing chrono-
potentiograms in such a way that the quantities used 
in eq. 24 may be expected to give reliable values of 

A typical chronopotentiogram is shown in Figure 1, 
the heavy solid line representing the variation of po­
tential with time. Its shape can be rationalized in 
terms of the relative importance of z'e and z'd in each 
region. After establishment of the initial IR drop, 
the potential rises rapidly along AB. The current in 
this region consists entirely of the "charging current" 
required to bring the indicator electrode to the po­
tential at which discharge of species 1 begins. 

The electrode reaction then accelerates so rapidly that 
most of the current is due to electrolysis by the time C 
is reached. There usually follows an interval CD in 
which the curve is nearly linear, after which the po­
tential begins to rise more rapidly until z'e reaches the 
limiting value corresponding to Cib » 0 at E. Beyond 
this point the decrease in electrolysis current (due to the 
widening diffusion layer) is so slow that the curve is 
essentially linear until the onset of another electrode 
reaction. 

Now if we assume that the effective capacitance de­
fined by dividing the slope de/dt of AB into the corre­
sponding current density z'T remains constant throughout 
the run, then the charging current at any subsequent 
point can be determined by comparing the slope at 
that point with the initial slope. Subtraction of z'd 

from z'T at each point gives a complete record of the 
variation in z'e with time during the run. It is apparent 
from the .shape of the curve that z'e is a rather com­
plicated function of time. Nevertheless, as long as 
the initial concentration Cib is sufficiently low (less 
than 0.04 M) to make the "migration current" term 
in eq. 13 negligibly small, we can use expressions al­
ready derived in the literature (for "chronopotentiom-
etry with programmed current") to calculate Di3 

from experimental chronopotentiograms. 
The simplest method is to approximate the curve 

BCDE by a sequence of straight lines. Along each 
line z'd is constant. Since Z'T is also constant, it fol­
lows from eq. 32 that z'e can be approximated by a 
sequence of step functions. An equation relating the 
diffusion coefficient to experimental parameters for 
such a current program has been given by Testa and 
Reinmuth.12 Its use can be illustrated for the simple 

(10) P. Delahay and T. Berlins, / . Am. Chem. Soc, 75, 2486 (1953). 
(11) W. Reinmuth, Anal. Chem., 33, 485 (1961). 
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Figure 1. A typical chronopotentiogram. 

construction indicated by the dashed lines in Figure 1. 
Here the approximately linear portion of the chrono­
potentiogram CD has been extended in both directions 
to intersect at points x and v with extrapolations of the 
linear traces that occur immediately before B and after 
E. At the abscissas of these intersections the total 
interval Tobsd can be divided into segments T0, n , and 
T2. The slopes corresponding to these intervals are 
designated S0, Si, and S2. Application of the Testa 
and Reinmuth equation to this example gives 

zrFcr
hV^b~i 
Ih 

S1 1 - r̂ JVT 1 + r 2 -
0 0 ; 

S2 

So S0 K* (33) 

By comparison with eq. 24, the right side of eq. 33 
is seen to be an "effective" value of the square root of 
r, i.e., an approximation of the value that would be 
observed if the electrolysis current were maintained at 
z'T throughout the run. A better approximation of this 
quantity can of course be obtained by using a larger 
number of segments. The general expression for a 
construction with n + 1 segments (numbered 0 to n) is 

(VT)^B = 
Oo J = I 

S1) 
A = ; 

(34) 

By taking the limit as n goes to infinity, eq. 34 can be 
expressed in the integral form 

(Vr) e£E if" Y dS 
Vd; 

(Tobsd - t)l/'dt 

where (dS/dr)i is the value of d2e/df2 at time t. For 
practical purposes this form is less useful than eq. 34, 
which permits calculation of (ViOes directly from experi­
mental chronopotentiograms to any degree of accuracy 
consistent with the data. Using the square of this 
quantity for T in eq. 24 then gives Di3 with correspond­
ing accuracy. It should be recalled, however, that 
this treatment is confined to systems with essentially 
reversible electrodes in the concentration range for 
which use of the Sand equation (20) can be justified 
when z'e is constant. Furthermore, it is possible that 
errors may arise from inaccuracy of our initial assump­
tion that the effective capacitance maintains its initial 

(12) A. Testa and W. Reinmuth, ibid., 33, 1324 (1961). 
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value throughout the run. Such errors would lead to 
internal inconsistencies in data taken at different 
concentrations and/or current densities. Except in 
cases where specific adsorption of the electroactive ion 
is important in determining effective capacitance, these 
errors could be avoided by calculating a capacitance 

The effect of added triphenylphosphine oxide on the con­
ductances of methyltri-n-butylammonium perchlorate 
and iodide in o-dichlorobenzene and of the perchlorate in 
ethylene chloride has been investigated at 25°. The 
results are interpreted in terms of cation-phosphine 
oxide complex formation. The addition of the phos-
phine oxide to the cation lowers the limiting equivalent 
conductance of the salts 15-17%. Viewing the addition 
of phosphine oxide to the cation as involving a displace­
ment of a solvating solvent molecule from the cation, the 
association constants for the complex in the two solvents 
are used as measures of specific cation-solvent inter­
action to account for the differences observed for ion-
pair dissociation constants in the two almost isodielectric 
solvents. 

Previous reports1'2 from this laboratory represented 
studies of the effects of addends such as amines on the 
conductances of tertiary ammonium salts in o-dichloro­
benzene (ODCB) and chlorobenzene. These effects 
were interpreted in terms of nucleophilic displacement 
of S by B, from the cation, AH + (eq. 1), where S 

AH+,S + B ^ ± : AH+,B + S (1) 

represents a solvating solvent molecule and B represents 
a molecule of addend. We assumed that the limiting 
equivalent conductance, A3

0, of the hypothetical salt, 
AH+BjX - , where X - is the corresponding anion, was 
approximately equal to A0

0, the limiting equivalent 
conductance of the salt, AH+,X_, in the solvent in 
question. This assumption was forced upon us since 
the salt, tri-n-butylammonium picrate typically, was 
such a weak electrolyte in the solvents used that inde­
pendent values of limiting equivalent conductances 
could not be obtained by the usual extrapolation pro­
cedures. 

The present work was initiated to test the validity of 
the foregoing assumption. The salts chosen, methyl­
tri-n-butylammonium perchlorate and iodide, were 
selected because they are strong enough electrolytes in 
ethylene chloride,3 and thus presumably in ODCB, 

(1) E. K. Ralph, III, and W. R. Gilkerson, / . Am. Chem. Soc, 86, 
4783(1964). 

(2) W. R. Gilkerson and E. K. Ralph, III, ibid., 87, 175 (1965). 
(3) L. F. Gleysteen and C. A. Kraus, ibid., 69, 451 (1947). 

at each potential from experimental observation of 
d«/d? at the same charging currents in the absence of the 
electroactive species. 

A subsequent communication will illustrate the 
application of these results to experimental studies of 
Ag+ in molten NaNO3. 

that good values of A0 can be obtained by extrapolation. 
The addend, triphenylphosphine oxide (TPPO), was 
chosen by trial. The amines used in prior work had 
little or no effect on the conductance of the fully 
quaternized salt. A clue pointing to the associating 
capabilities of phosphoryl compounds was furnished 
principally by the observation of Elliott and Fuoss4 

that in tricresyl phosphate as solvent, the ion-pair dis­
sociation constant of tri-M-butylammonium picrate 
was almost as large as that for the tetrasalt. Further, 
similar compounds are used extensively as solvent 
extraction agents for salts and acids,6 presumably 
through strong interaction of the phosphoryl oxygen 
group and the cation. 

Our choice of ODCB and ethylene chloride (EC) 
as solvents was based on prior work1'2 in these media in 
this laboratory. 

Experimental 

Methyltri-n-butylammonium perchlorate was pre­
pared from the iodide by metathesis with silver per­
chlorate in alcohol solution. The product was re-
crystallized from alcohol, m.p. 169° (lit.3 m.p. 159°). 
The salt was dried in vacuo at room temperature for 
24 hr. prior to use. The iodide was prepared as pre­
viously.1 Triphenylphosphine oxide (Columbia Or­
ganic Chemicals Co.) was dissolved in benzene, ex­
tracted with aqueous sodium bicarbonate, and washed 
with distilled water. The benzene was evaporated 
and the recovered TPPO was recrystallized from a 
benzene-hexane mixture. The TPPO was dried in 
vacuo at 90° for 24 hr., m.p. 154-155°. ODCB (Allied 
Chemical Co., Solvay Process Division) and EC 
(Columbia Organic Chemicals Co.) were treated as 
described previously.x The specific conductance of the 
ODCB was 1-2 X 10-11 mho/cm., while that of EC 
was 1 X 1O-10 mho/cm. The conductance bridge, 
cells, and experimental procedure have been de­
scribed elsewhere.1 All measurements were carried out 
at 25.00°. 

(4) M. A. Elliott and R. M. Fuoss, ibid., 61, 294 (1939). 
(5) See R. M. Diamond and D. G. Tuck in "Progress in Inorganic 

Chemistry," Vol. 2, F. A. Cotton, Ed., Interscience Publishers, Inc., 
New York, N. Y., I960, p. 171 ff. 
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